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S U M M A R Y  
This paper attempts to investigate the influence of compression work on free convective flows in gases. Since this effect 
is usually small a dimensional analysis using the complete set of governing equations is presented first, in order to 
recognize the cases for which compression work is not negligibly small in comparison with other effects. Among other 
things it is shown that in gases viscous heating is always of a much lower order of magnitude than compression work. 
Next a case of boundary layer flow that possesses similarity is studied in some detail. For various degrees of importance 
of compression work a numerical integration of the governing ordinary differential equations is carried out. For very 
strong compression work an asymptotic solution can be found. In all cases the boundary layer shows oscillatory 
behaviour of both the temperature and velocity profile. 

1. Introduction 

Since the equations governing heat transfer through moving fluids are of considerable com- 
plexity, one always has to consider approximate representations of these equations. The 
type of approximation depends upon the particular problem one wants to investigate. This 
has led to the introduction of such distinctions as, boundary layer flows, creeping flows, 
incompressible flows, etc. By retaining only the dominant terms pertaining to a certain class 
of problems one obtains the approximate equations of that class. 

A problem of natural convection usually involves the observation that the Boussinesq 
approximation applies. This means that density variations are taken into account only insofar 
as these lead to the effect of buoyancy. Elsewhere one may neglect these variations, so that 
the fluid is considered as essentially incompressible. When stating the energy equation it is 
usually remarked that viscous dissipation is negligible. One also neglects, tacitly, the com- 
pression work, possibly because the fluid is considered as incompressible in the Boussinesq 
sense. Up to now no systematic investigation into the importance of compression work in free 
convection has been done. On the other hand, viscous dissipation has received the attention 
of some authors (Gebhart [1], Gehhart  et al. [2], Ostrach [3]). Viscous dissipation naturally 
adds heat to the system and thus it will accelerate the free convective flow, and as a consequence 
it will increase viscous dissipation. It is somehow difficult to comprehend that the result of a 
certain phenomenon is to increase its own effect. This is the very reason why in this paper 
the influence of compression work is investigated. Indeed, whereas viscous dissipation can 
affect the fluid in one way only, namely by heating it, the compression work term can both 
heat or cool the fluid depending on whether the fluid expands or contracts. 

In the case of a locally heated fluid, i.e. for convection in an upward direction, the fluid will 
expand due to pressure drop, which represents a cooling effect. If this effect is stronger than that 
of viscous dissipation, which we will prove it is, we will not have to contend with the unnatural 
case of a fluid flow that is accelerated by its own action. But apart from this it is interesting 
to introduce a term in the energy equation that absorbs heat. In the equations of free convection 
that are usually considered such a term does not occur. Thus, if a certain amount of heat is 
added to the system it will always remain in the system. This can also lead to unnatural effects. 
Let us take, for example, the case of a buoyant plume above a wire that is producing heat at 
a constant rate. It is known (Zel'dovitch [4], Yih [5], F@i  [6]) that the temperature above 
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the wire decays to zero at a distance sufficiently far above the source. The upward velocity, 
however, increases indefinitely in the same direction. Apparently, this is due to the fact that a 
non-vanishing amount of heat has to be transported in an upward direction. When a mechanism 
that absorbs heat would be represented in the equations, such a result would not have been 
obtained. 

If, on the other hand, we consider a locally cooled fluid, which results in a flow in downward 
direction, the compression work will heat the fluid, thus reducing the temperature difference 
with the ambient fluid. In the case of a downward directed plume, heat will be added until 
there is no longer a heat-defect far below the heat sink. 

These remarks undoubtedly demonstrate that there are strong reasons for investigating 
the influence of the compression work terms in the energy equation. Since gases are more 
compressible than liquids it seems natural to investigate the problem for gases. In order to 
simplify the analysis further only ideal gases will be considered. We will start with a dimensional 
analysis that yields the relative magnitude of the various terms in the equations. This analysis 
is modeled after the celebrated work of Ostrach [7]. Next, a simple example will be given 
that shows the effect both qualitatively and quantitatively. 

2. Dimensional Analysis 

cgT @ 
pCpUj G -- uj 6~xj -- 

(iv) The equation of state 

The equations to be considered are 
(i) The equation of continuity 

A -  u; ~p (A = ~?uj 
p (?xj' \ -  ~?XJ/ 

(ii) The momentum equations (i = 1, 2 for two-dimensional flow) 

(~Xi ' 

(iii) The energy equation (for ideal gas) 

(1) 

(2) 

(3) 

p = R p T .  (4) 

Here x l measures distance in the direction parallel to the force of gravity (opposite direction), 
x2 is perpendicular to xl, ul and u2 are the velocity components in the xl and x2 direction 
respectively, g may be the acceleration due to gravity or a centrifugal acceleration, p is the 
density, p the pressure, k the thermal conductivity and fi the dynamic viscosity. It is important 
to note that the second term of (3) represents compression work, while the last two terms give 
rise to viscous dissipation. 

Ostrach [7] has investigated these equations when the gas is locally maintained at a tem- 
perature that is slightly different from that of the ambient fluid (Te). Thus the relative temperature 
difference was considered to be much less than unity 

IATI 
- 1 .  (5) 

Te 

For simplicity let us assume A T > 0 so that we will have flow in an upward direction. Since 
we want to investigate certain effects that are usually small, it is necessary to repeat Ostrach's 
analysis partly and make appropriate modifications where needed. The dimensional analysis 
should lead to simple equations that account for the compression work effect. It is necessary 
to state clearly which effects are neglected, and their relative magnitude with respect to those 
retained should be small. Ostrach observes that in the heated region the changes in the pressure 
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and the density should be proportional to e. This author therefore introduces the following 
transformations 

P = p o [ e x p ( - e l X l / l ) + e f i ] ,  gl = gl/(RTo) (6) 

P = Po [exp ( -  e1 x,/ /)  + eft], (7) 

T = T o [ l + e T ] ,  (8) 

where/~, fi and T are at most of order unity and l is a length characteristic for the dimensions 
of the system. The subscript 0 refers to the position Xl = 0. The ambient gas is considered to 
be of uniform temperature (T o = T~). Since only small temperature differences are considered 
it is reasonable to take # and k as constants. In any case, small changes in # or k will not change 
the character of the flow. If in addition the velocities and lengths are rendered dimensionless 
with 

ui = Ugi,  (9) 

X i = 12 i (10) 

we obtain the following for the equation of continuity 

82i u; ~ + O{max(e~, q e ,  e2)} 
1 + O{max(e, ez) } (1!) 

Since e, is usually small we have that the equation of continuity can be approximated by 

3 = 0.  (12) 

It is clear that, except for very small temperature differences, the value of ea is much less than 
that of e, especially when I is moderate. However, on an atmospheric scale el may well be 
larger than e even for moderate temperature differences. 

On choosing U 2 = gle which is known to be the appropriate choice for boundary layer flows 
(Ostrach [7 ] )we  obtain for the momentum and energy equations 

~ 0ui _ ~ 917 11 
eXj P f ' ~ - N  oxi + ~ ~ 2 a ' '  (13) 

0T e/~ 1 V 2 ~ +  - + + (14) 

where terms of order e and order e~ have been neglected, except for the dissipation term, 
since we want to obtain an estimate of the relative magnitude of this term. N, M, G and P 
are given by 

gel 3 vpo Cp 
N -  Po M -  gl G -  P -  (15) 

pogI '  c p A T  ' V 2 ' k ' 

where v is the kinematic viscosity and G the Grashof  number. P is the Prandtl number. 
The equation of state leads to 

i 6 = f i + T .  (16) 

Since it is clear that N has a very large value, it follows that/7 as defined in (6) is not o[ order 
unity. If it were, the pressure term in (13) would be dominant over all other Ierms in the equa- 
tion. We rather have to assume that N/7 is a quantity of order unity. Thus let us introduce 
i0 = Ni6. To first order the equation of state (11) now becomes 

fi+ T = 0 ,  (17) 

which expresses that the small temperature variations are almost exactly balanced by a density 
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change of the same order. The relative pressure change due to temperature variations is of a 
much lower order of magnitude. By finally introducing the boundary layer transformations 
(G >> 1) 

51=u ,  52=G-~v ,  2 l = x ,  22=G- �88  (18) 

the free convection boundary layer equations which include the compression work are obtained 

0u ~v 
0x + ~yy 0,  (19) 

0u 0u 0~ 02 u 
u~x + V~yy = T - ~ x  + -  (20) @2 , 

@ - 0 ,  0y 

bl ~ X  -}- V ~yy -}- M R  - -  P Oy 2 . (22) 

Terms of O(e), O(eq), O(Me), O(N *) and O(G--I) have been neglected in deriving these equa- 
tions. From the derivation it must have become obvious that the relative magnitude of the 
viscous dissipation terms with respect to the compression work term is of the order O(e), so 
that the former is indeed negligibly small with respect to the latter. 

Let us now focus our attention on the term Mu in (22), which represents compression work. 
For positive u, i.e. for flow in an upward direction this term is responsible for absorption of heat. 

It is clear that the factor M is decisive for the amount of heat that will be absorbed. Since c v 
is very large (c v ~ 103 J kg-  * deg K -  *) one can only obtain larger values of M when I is very 
large, when A T is very small or in very strong acceleration fields. Since the change of T will 
be of the order O (91/% A T) it follows from (8) that 

T = T O + A r + 0 (gl/cp), (23) 

which yields the well-known meteorological result that the equilibrium temperature of the 
dry atmosphere drops by 1 deg K every 100 m (constant-lapse-rate atmosphere). In the deriva- 
tion of the equations we have assumed that the temperature outside the boundary layer is 
uniform (lapse-rate equal to zero). It seems certainly possible to maintain such a non-equi- 
librium condition during a large enough time for the present analysis to be meaningful. How- 
ever, if the present analysis is to apply to an equilibrium atmosphere one must introduce T e in 
lieu of T o in (8). The analysis then will change accordingly. 

The case of small temperature differences seems to be of importance in removing heat far 
above a heat source. Indeed, the temperature in a buoyant plume decreases to zero far enough 
above the source while the velocity u attains very large values. Thus the heat absorbing term 
becomes increasingly important. Also at the outer fringes of the boundary layer, where the 
temperature differences are small, compression work may play an important role. 

It may be in order to perform the dimensional analysis for Grashof numbers that are of 
order unity. In that case it is necessary to make the buoyancy term and the viscous term of the 
same order of magnitude. The appropriate choice of U then is (Ostrach [7]) 

U = g 12 g/v. (24) 

The momentum and energy equations then become 

~5 i ~p G 5 j -  = T ~ i l -  -}- V25  i (25) 
02j ~ ' 

(_  ~9~ ) 1 -  2 (05  i 05;~(05i + 05j~ (26) 
a Uj G 4- Mu I = ~ V T +  GMg \ Offj + 02 2 \02j 02,] 

and again the viscous dissipation is seen to be negligible in comparison with compression work. 
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3. An Illustrative Example 

In this section we will illustrate the theory with a simple example, It follows from equation (15) 
that in the case of boundary layer flows a similarity solution can be found if A T is proportional 
to 1. Thus, let us consider free convection past a semi-infinite vertical flat plate which is main- 
tained at a temperature 

L = To + (27) 

where x = 0 at the leading edge. By aid of equations (15), (5) and (27) we introduce the Grashof 
number based on x as Gx = g~x4/(v 2 To). Through introduction of 

G ~- G~f (  y u = v - X f ' ( t l ) ,  v = - v  rl) , r=To+c~xO(tl), ,~ = - G ~  (2S) 
X X X 

into equations (2) and (3) the following ordinary differential equations are obtained 

f , , , + f f , ,  (f,)2 + 0 = 0 ,  (29) 

i_ O " + f O ' - f ' o - m f ' =  0 (30) p , , 

where primes stand for differentiation with respect to ~/. M is given by M = g/(cp c~). The bound- 
ary conditions to be satisfied by f and 0 are 

f(0) = f ' (0) = 0 ( 0 ) -  1 = 0(oo) = f ' (oo)  = 0.  (31) 

It is of course rather easy to integrate the system (29-31) using a digital computer. In this way 
one can study the problem most conveniently for all values of M. It is, however, interesting 
to investigate the equations first for large values of t/. From the computer results it follows 
that in all cases f tends exponentially to a certain positive constant c(M) as t/tends to infinity. 
Thus for large values of t / the  equations may be linearized as follows 

f ' " +  c f " +  0 = 0 ,  (32) 

I O " + c O ' - M f ' =  0 (33) p 

Since we are dealing with gases the values of the Prandtl number will be of order unity. As the 
analysis of the equations (32) and (33) is simplified considerably by taking P = 1 we will take 
this value of the Prandtl number in the subsequent analysis. The system now reduces to 

f v  + 2c f W  + c2 f,, ,  + M f '  = 0 ,  (34) 

which can be solved by substitution o f f =  e z". The five values of 2 that satisfy (34) are 

fl~l = 0 ,  ~2,3,4,5 = - - �89  {C 2 + _ 4 i M ~ } 5 ]  . ( 35 )  

The first of these values naturally enables us to find solutions that tend to c as r /~  oo. If we 
evaluate the other values for small M, i.e. for small compression work effects, we obtain 

iM ~ M _ 2iM ~ 
' ~ z , 3 = - c - +  c c 3 + ~ g - +  . . . ,  (36) 

iM ~ M _ 2iM ~ 
) ~ 5 =  + - -  + + + (37) 

' - c c ' "  

Obviously, 24.5 are unsuitable, as they lead to unbounded solutions as t /~oo. The solutions 
associated with 22, 3 tend to zero exponentially. However on this exponential decay a slow 
oscillation, the frequency of which is proportional to M~/c, is superposed. This, perhaps, is the 
most important result of the present investigation. It means that the compression work term 
induces an oscillatory behaviour at the outer edge of a free convective boundary layer. In 
purely free convective flows no oscillations are encountered. The present analysis shows that 
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inclusion of the effect associated with M leads to oscillations, even for the smallest values of M. 
The behaviour o f f  for large values of t/can now be given as (M small) 

f ~ c + e - C " ( l + M / c 4 + " ' ) [ A c o s { ~  (1--~g-2M . . )  } + B  s m ) T  (1 2M . [ M~-t/ 

The values of A and B can be found by considering (38) as the main part of an outer expansion 
that gives the solution for f in a region where the variable M~t/is of order unity. This is the 
region where the oscillatory behaviour o f f  is important. The solution in the inner region where 
t/is the natural variable, is obtained by expanding regularly in (29-30) for small values of M. 
The purely free convective solution furnishes the main term of this expansion. The asymptotic 
behaviour of this main term, for t/~ ~ ,  can be obtained by using (34) for M = 0. This is easily 
shown to be 

f --* c(O) + (c 1 + C 2 I~) e c(O)rt ~- higher orders (39) 

where c(0), cl and c2 are obtained from numerical integration of the equations (29) and (30) 
for M=0 .  Evaluating (38) for small values of M gives 

c(O)+e-C'~ + B  M~ t/] + higher orders (40) 

Thus, by choosing A = cl and B=  c(O)cz/M ~ the inner and outer solutions behave similarly to 
first order in an intermediate region. It should be clear from this that the oscillatory behaviour 
can never be obtained by considering the inner region only, i.e. by regularly expanding in 
(29-30). This proves that a singular perturbation technique must be applied to account for 
this effect. It seems that for finding higher perturbations the application of a two-variable 
technique of the Poincar6 type is most suitable for the present problem (Cole [8]). These 
higher perturbations are of little importance, however, since for small values of M the oscil- 
lations are overpowered by the rapid exponential decay. 

For several values of M and P numerical integrations of the pertinent differential equations 
have been carried out. Some important results are presented in Table 1. 

The value of 0'(0) is most important in deriving the heat transfer at the wall. f"(O) is used 
for skin-friction calculations, while f(oo) is related to the total mass flow. In Figs. 1, la, 2 and 2a 
graphs representing the upward velocity and the temperature have been given for P=0.72. 
For the larger values of M the oscillations of the temperature profile are quite conspicuous. 
For M < 1 the oscillations are made visible on large scale graphs. It may be expected that the 
oscillations will become more important for larger values of M. Whereas for small and moderate 
M these are only visible at the outer edge of the boundary layer, it may be expected that for 
very large values of M the oscillations will dominate the entire flow field. To show this let 
us transform the equations (29) and (30) by introduction of 

f(t/) = (4 p3M3)-�88 O(tl) = 0(#), #-- (1pM)�88 (41) 

TABLE 1 

P M -0 ' (0 )  f"(0)  f(oo) 

0.72 0 0.5332 0.7791 1.1838 
1 0 0.5951 0.7395 1.0317 
0.72 0.5 0.6315 0.7031 0.8077 
1 0.5 0.7009 0.6594 0.6675 
0.72 1 0.7020 0.6530 0.6232 
1 1 0.7757 0.6091 0.5048 
0.72 4 0.9372 0.5162 0.2876 
1 4 1.0252 0.4776 0.2270 

large (PM/4) ~ (4PM) -~ (4p3M3) -~ 
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Figure 1. Dimensionless vertical 
velocity for M ~ 0, 1 and 4. 
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Figure la. Dimensionless vertical velocity in outer part of boundary layer for M = 0, 0.5, 1 and 4. 

F a n d  O satisfy the  e q u a t i o n s  

1 
F'"+40 + PM {FF'!-(F') 2} = 0 ,  (42) 

1 {FO'- F'O} = 0 (43) O " - F ' + ~  

with  b o u n d a r y  c o n d i t i o n s  a n a l o g o u s  to (31). He re  p r imes  s t a n d  for d i f fe ren t ia t ion  wi th  respect  
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Figure 2. Dimensionless temperature for M = 0 ,  1 and 4. 
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Figure 2a. Dimensionless temperature in outer part of boundary layer for M = 0, 0.5, 1 and 4. 
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to #. Since P ~ 1 this system is suited to an investigation for large values ofM. A simple regular 
expansion 

1 
F = F o + ~ F ~ + . . . ,  (44) 

1 
0 = t~ 0 -~- ~ 01 -~- . . .  (45) 

is successful here. After some calculations the result can be obtained as follows 

~o = 1 - e-"(sin # + c o s  #),  
t 

F 0 = 2 e - "  sin/~, 

0o = e - "  cos p ,  

t - 2 P  
E1 - 10P [ e - U ( 3 c o s / ~ - s i n / ~ ) - 2 e - 2 " - l ] +  

(46) 

(47) 

(48) 

I + P  
+ 4 P - -  e -  u [ _ sin/~ + # (sin/~ + cos /0]  - �89 + e - 2u) + e - "  cos # ,  (49) 

1 - 2 P  
F ' ~ -  

5P 

I + P  
[ 2 e - 2 " - e - " ( 2  cos # + s i n  #)] + ~ - ~  e-U(1 - ~ )  sin # +  

+e-2U-e -" ( s in /~+cos# ) ,  (50) 

1 - 2 P  I + P  
01 - 10P [e -2U+e-" (2  sin # - c o s  #)] + ~ f i -  e - U ( s i n / z - #  cos #).  (51) 

The following may serve as an explanation of these results. Let us confine ourselves to the 
expressions for F; and 0 o that represent the major part of the velocity and the temperature 
profile respectively. Near the wall buoyancy forces the fluid to flow in an upward direction. 
This upward velocity cools the fluid through the action of the compression work term. As the 
fluid is still flowing upwards when 0 reaches the value zero, the gas will be cooled further, so 
that locally a negative temperature difference with the ambient fluid will be obtained. This 
results in negative buoyancy which retards the flow until the velocity becomes negative. For  
a negative velocity the compression work term adds heat to the system so that 0 may reach 
the value zero again and subsequently attain positive values. From then onwards the process 
starts all over again. The damping is naturally caused by viscosity. From (41) it can be seen 
that this process takes place over a distance that is considerably less than that needed for 
temperature decay in free convection flows without compression effects. Indeed, the latter is 
described by the variable t/while for the former # is a variable of order unity. In this range of/~ 
the value of t/is very small for large values of M. 

For  the heat transfer at the wall one usually introduces the local Nusselt number 

Nux= - AT~L #y Jw 

Using (28) this is easily transformed into 

Nux _ - 0 ' ( 0 ) .  (53) 

Thus the information of Table 1 can be used to determine the heat flux. For  larger values of M 
it is convenient to use the results of the asymptotic analysis. On using (41), (48) and (51) it is 
easily proved that 
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-0 ' (0)  = 1 + 10P M + 0 , (54) 

which shows that the heat transfer grows as M tends to infinity. This result had to be expected, 
since for larger M more heat will be removed from the fluid by compression work, so that 
more heat can flow from the wall into the fluid. For M = 4 and P = 1 the two-term expansion 
(52) predicts - 0 ' ( 0 )=  1.025 which is remarkably close to the numerical value 1.0252. This 
proves that the asymptotic analysis can be used up to rather low values of M. Even for M = 1, 
P =  1 the theoretical value -0 ' (0)=0.777 is very close to the value found by the numerical 
computation. 

In calculating the skin-friction a similar procedure has to be followed. It can be shown 
without difficulty that this is proportional to f"(0). For large values of M we can find the 
following expression 

f " ( 0 ) = ( 4 P M ) -  ~ I1 3 P + l  1 2 0 P  M + O (  1~2) 1. (55) 

This shows that the skin-friction will decrease as M tends to infinity. The following explanation 
may be given. For large values of M so much heat is removed from the system, that only near 
the wall an appreciable temperature difference with the ambient fluid exists. Thus buoyancy 
is only strong very near to the wall. But just here the driving force is strongly opposed by the 
viscous shear forces. Therefore the fluid can only reach relatively small velocities. This is in 
complete agreement with the earlier remark which stated that for large values of M the flow 
field is much closer to the wall than in the case of pure free convection 

By using the knowledge acquired through the study of the similarity solution it is possible 
to attack with success several non-similar boundary layer problems. One could consider for 
example the case of uniform heat flux or the case of uniform wall temperature. It must be 
clear that these problems have to be treated in the same way as the problem just presented. 
A difference is that M will now be a function ofx  and thus one will have to develop coordinate 
expansions for both large and small values of Mx where Mx is given by 

gx (56) 
Mx - c,~(Tw- To)" 

For intermediate values of Mx there is an obvious difference between the similar and the non- 
similar problems. In the similar case one can find solutions in this region by integration of a 
set of ordinary differential equations. For the non-similar case this cannot be done. One 
usually finds satisfactory solutions by interpolation between the cases of large and small M. 
It is seen that for a uniform wail-temperature Mx is large downstream, while near the leading 
edge only small values of M~ can exist. 

4. Concluding Remarks 

In the present paper it has been shown how compression work can affect free convective 
flows. Since the parameter that is decisive about its importance is large for small temperature 
differences, the compression work seems to become most important in the final stages of a 
heat transfer process when due to effective convection and conduction, the temperature 
differences have become very small. Under such conditions its action will be to remove abund- 
ant heat from the system. From the dimensional analysis it became clear that, at least for gases, 
it is not realistic to study any dissipative heating when the Boussinesq approximation is applied. 
The relative magnitude of viscous heating with respect to compression work was shown to 
be of the same order of magnitude as the terms neglected in the Boussinesq approximation. 

Practical applications that sustain the present work are perhaps most easily found in 
meteorology. It is well-known that the heating of the mountain winds that are associated with 
names as f6hn or chinook, is caused almost exclusively by compression of the air as it descends 
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along the slopes of the mountain. The temperature rise of 1 deg K for every 100 m descent is 
also given by the present work (23). This indeed proves that viscous heating does not play 
any role here. 

In the case of boundary layer flows in the atmosphere examples can be given only for very 
small temperature differences. If we take 9 =  10, To ~ = 1/300, AT=0.1, %= 1000, v -  10 -5, 
l-- 10, where MKSA units have been used, M will have the value 1, so that the compression 
work is moderately strong. Since e ~ 10- 3, el ~ 10- 3, N -  1 ~ 10- 3, Me ~ 10 3, G-+ ~ 10 ~, the 
neglected effects are certainly of very small order of magnitude. In order to show the effect in 
a laboratory experiment one must resort to very large artificial gravity fields, e.g. in fastly 
rotating containers. A practically feasible example could be 9 = 104, A T = 0.1, l=  0.1 which 
gives M = 10, so that compression work is relatively strong. The neglected effects are again small 
in comparison with those retained, and boundary layer theory may be applied as the Grashof 
number is large. By taking A T = 1 this example gives moderate influence of compression work. 

A final remark concerns the oscillations induced by the compression work. It is known 
that oscillatory flows are more likely to become unstable than non-oscillatory flows. Thus, 
although the oscillations induced by the work of compression are usually very small as com- 
pared with the complete flow, they may be instrumental in triggering off larger instabilities. 
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